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Executive Summary 
 
Preservation of digital media collections has become a scalability issue due to the large quantity of 
heterogeneous content. The amount of information has reached a point where distributed, shared 
nothing computing environments are necessary to enable processing in a timely manner. Hadoop is a 
system that abstracts from the hardware in a computing cluster and presents the user with a 
programming interface. The user can load data into the system and write programs that execute on 
the cluster, while not worrying about network transfers or data access. At the same time, 
governmental organizations like public libraries want to have an intuitive yet powerful graphical user 
interface to design preservation workflows that are supposed to run on Hadoop. Taverna offers such 
an interface as a domain-independent workflow management system. This deliverable discusses the 
feasibility of running preservation processes on Hadoop and the feasibility of automatically translating 
Taverna work flows into Hadoop programs. While it is certainly feasible, there is room for 
optimization. 
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1 Introduction 
The execution platform will provide a general means to facilitate the specification and evaluation 

of complex preservation operations over massive volumes of content. This work package is concerned 
with the design and implementation of a driver program, called PPL (for “Program for parallel 
Preservation Load”), for the optimized creation and execution of parallel algorithms for digital 
preservation actions. 

Preservation in the SCAPE context is generally performed by public organisations such as national 
libraries. SCAPE aims to help enable these organisations to carry out preservation on a very large 
scale. In order to preserve huge volumes of digital material these libraries have acquired computing 
clusters as a platform for Hadoop1.  Hadoop is a framework for distributed computing in shared-
nothing environments running on commodity hardware. In order to run preservation tasks on these 
clusters, a number of steps must be taken: 

1. Acquire and install the hardware 
2. Install and configure Hadoop on the cluster 
3. Transfer data onto the cluster 
4. Develop preservation programs for Hadoop 

The crucial step here is step 4: “Develop preservation programs for Hadoop”. Usually, these 
programs are written in Java or another of the available higher level languages and they must use the 
MapReduce2 paradigm. MapReduce consists of two processing main phases, i.e. map and reduce, for 
which the developer provides implementations. . Becoming accustomed to thinking in a MapReduce 
fashion is challenging, depending on the developer’s programming experience and algorithmic 
thinking ability. 

While it is not desirable to train the library employee’s to writing programs in higher-level 
languages like Java or Pig3 for MapReduce, it certainly is desirable to enable them to create 
parallelised workflows that execute efficiently on Hadoop. By abstracting to an even higher level, most 
of these underlying technologies are no longer visible to the user; instead users create workflows with 
an intuitive, easy to use, and powerful GUI – Taverna4. Teaching users how to use Taverna is a much 
easier task, than teaching them how to program Java. 

One example of a common digital preservation scenario, scannedconverting, is converting 
scanned book pages to an open standard.  The steps below decompose this scenario for execution on 
a Hadoop cluster. 

1. Load images into Hadoop Distributed File System (HDFS)5 
2. Perform automated image migration to the desired format 

                                                           
1 http://hadoop.apache.org/  

2 http://research.google.com/archive/mapreduce.html  

3 http://pig.apache.org/, a platform for analyzing large data sets that consists of a high-level 
language for expressing data analysis programs 

4 http://www.taverna.org.uk/  

5 http://hadoop.apache.org/docs/r1.1.2/hdfs_design.html  

http://hadoop.apache.org/
http://research.google.com/archive/mapreduce.html
http://pig.apache.org/
http://www.taverna.org.uk/
http://hadoop.apache.org/docs/r1.1.2/hdfs_design.html
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3. Apply automated quality assurance processes to compare new  images against the 
originals 

4. Persist the process results within the institutions preservation system. 
While steps 1 and 4 are also concerned with the transfer of files between storage locations, these 

steps are technically not part of the preservation processes of image conversion and quality assurance 
itself; steps 2 and 3 are however, and are distinct and consecutive steps. Quality assurance cannot be 
performed before the conversion has happened. These two steps (or an arbitrary number of steps for 
other scenarios) can be easily linked using the Taverna GUI. By enabling an automatic conversion from 
Taverna workflows to Hadoop programs, anyone who can create workflows can create distributed 
programs for scalable processing. 

This work package is concerned with two major questions: 
1. Is it feasible to run digital preservation processes on Hadoop? 
2. How can we simplify the creation of workflows for Hadoop? The following sections 

provide initial answers to these questions. A naïve approach to converting and executing 
Taverna workflows on Hadoop is benchmarked and a possible optimization is presented.  
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2 The Translator (PPL) 
This section presents the Program for parallel Preservation Load (PPL), its usage, and its 

functionality. 

2.1 Overview 
In order to enable scientists to easily scale Taverna workflows, the presented translator 

automatically generates a java class file. Essentially, the program takes a workflow as input and 
automatically generates a class that could be uploaded to and executed by Hadoop. 

The resulting Hadoop execution is a linear list of MapReduce jobs produced from the arbitrarily 
complex input workflow. The required input for each individual job is either read locally (as provided 
by the Hadoop framework), or is fetched from other machines in the Hadoop distributed file system 
(HDFS), if required. 

2.2 Usage 
The translator can either be used as a compiled jar file, or can be built from source6. A command 

line interface is supplied; simply specify the location of the Taverna workflow file as a command line 
argument, and the translator will do the rest. Use -h or --help as program argument to get the help 
output. 

2.3 The Translation Process 
Figure 1 shows a simplified version of the translation process. PPL uses the SCUFL2 API to 

interpret workflow files created with Taverna. First the entire workflow is translated into a linear list of 
its activities. To achieve this, the translator starts at the workflow’s output ports and follows the data 
links backwards and recursively. Each activity is checked to see whether it’s already part of the linear 
list. If so, it is deleted from the linear list. After this check is complete the activity is appended to the 
end of the list. Recursion is performed when it encounters a workflow input port. The algorithm 
follows the data link to the source activity and performs the same steps there. Finally, the list is 
reversed and all of the activities and ports needed to produce data for the workflow output ports are 
part of the list. If an activity A depends upon activity B, activity B appears first in the list. 

Next, each activity is translated individually from a template. For activities with multiple inputs, 
the Taverna user decides whether to combine these using a cross product or a dot product; the 
resulting Hadoop job also includes this logic. Since the execution of the activity must be done after the 
dot or cross product is created, activity logic is implemented in the reduce phase. In this manner map 
and reduce can be used to build the dot or cross product before invoking the activities (a dot product 
for example can be implemented as a reduce side join). 

                                                           
6 https://github.com/schenck/taverna-to-hadoop 

https://github.com/schenck/taverna-to-hadoop
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An activity in the Taverna workflow that is to be translated can have any number of input ports 

and any number of output ports. The data location of outputs from output ports is chosen based on 
the input ports it feeds in to. In turn, the reader that reads the data for those input ports looks in 
those locations and reads the data. The location consists of a prefix defined by the user, the activity’s 
name, and the input port’s name. 

Finally, Java creates a JAR that can be executed on Hadoop. This JAR includes all dependencies, so 
that they are available to Hadoop. 

2.4 Architecture 
This section describes the Java classes that are part of the PPL, shown in Figure 2. The class 

TavernaToHadoopMain handles initialization and triggers the translation process. Config and 
FileUtils are helper classes for configuration and reading/writing files respectively. 
TavernaToHadoopConverter preforms the translation. 

The translator uses java code templates to create the final MapReduce class. 
TemplateTranslator converts these general templates into Java code by replacing placeholders 
and organizing imports required for the execution. To put individual map and reduce classes for the 
respective activities in the Taverna workflow into the final class, the WorkflowManager reads the 
workflow using the SCUFL2 API7. It converts the workflow into a linear list of ActivityConfigs, 
each representing the execution of a Taverna activity. ActivityConfig is sub-classed for each type 
of activity. There are templates for each of activity type - sub-classes need to supply a way of 
translating those into java source code. 

                                                           
7 https://github.com/myGrid/scufl2 
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Figure 1: Compiler overview. 

https://github.com/myGrid/scufl2
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2.5  Data Preparation 
In order to be able to create a dot product in Hadoop the input data needs prior preparation. 

Hadoop splits large input files into small chunks and hands individual chunks to tasks as input. Each 
distinct task only knows the position in the complete data as a byte offset. Since each line can have 
any length, a byte offset does not allow for the calculation of a line number. To enable the creation of 
a dot product, the line number needs to be known for pairing entries from multiple sources on the 
same lines. 

To create the dot product, the data needs to have the line number as the first value on each line, 
followed by a separator, and the data: 

1 image01 
2 image02 
3 ... 

 
This can be carried out when loading the data into HDFS and only needs doing once. Many jobs 

can then be executed on this prepared data, so, making the data preparation overhead (against the 
execution) less significant. 

2.6 Extensibility 
It is possible to extend the converter for any Taverna activity. The class for the conversion needs 

to be a sub-class of ActivityConfig and it must implement the abstract methods defined in the 
super-class. The name of the class needs to equal the name of the activity extended by the term 
Config. The PPL searches for classes and templates that match the activity names within the 
workflow. Translation of the templates for the activity must be provided in the methods 

Figure 2: Class diagram of the translator. 
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getMapReduce() and getRun(). This enables anyone to implement configurations for any arbitrary 
Taverna activity. As a result, even Taverna plug-ins can be supported to be executed on Hadoop. 

2.7 Sustainability 
Sustainability of the tool will be given by a number of factors. First of all, the entire code is hosted 

publicly on GitHub8. This means that anyone at any given time can correct or enhance the program. 
The entire source code is written in Java, one of the most popular high-level programming languages. 
Within the source code exists exhaustive information as JavaDoc. JavaDoc enables other programmers 
to understand the source code more quickly and find information about any class or method in a very 
structured way. 

Finally, the entire code is licensed under the Apache license9. This means, that anyone can edit 
the source code in whichever way they please. None of these changes must be returned to the owner. 
Other software using this software does not have to be licensed under the Apache license. Any code 
under the Apache license can also be distributed freely. For more information see the online version 
of the license10. 
  

                                                           
8 https://github.com/schenck/taverna-to-hadoop  

 

10 http://www.apache.org/licenses/LICENSE-2.0.html 

https://github.com/schenck/taverna-to-hadoop
http://www.apache.org/licenses/LICENSE-2.0.html
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3 Executing Taverna Workflows on a Hadoop Cluster 
This section presents initial results of running “compiled” Taverna workflows on a Hadoop cluster, 

i.e. not just executing a Taverna Workflow on a Taverna runtime engine on each node – the workflow 
is “compiled” to a MapReduce job first. 

3.1 Overview 
A Taverna workflow has been translated into a native Hadoop job using the Program for parallel 

Preservation Load (PPL or translator, see section 2), with the resulting jar package copied to the 
Hadoop cluster. Subsequently, Hadoop was invoked to execute the jobs contained within the jar. The 
process was benchmarked in order to compare the time taken by the automatically compiled program 
compared to that taken by the manually written program, which is a hand coded translation from 
Taverna to Hadoop. 

3.2 Benchmark 
Runtimes of the three versions of the Hadoop program were recorded and compared. The cluster 

consisted of six physical Hadoop worker machines, each with 16 2GHz cores and 30GB of RAM. 
Hadoop was configured so that each worker ran at most 15 concurrent mapper tasks and eight 
concurrent reducer tasks, resulting in a possible maximum of 138 concurrent tasks executing on the 
cluster. 

Both jobs received identical inputs: a file of approximately 6GB containing almost 80 million lines 
of random text. Time taken to generate the file and transfer it to the cluster is not considered here, 
just the time taken to run the MapReduce tasks. 

A simple Taverna workflow was created for benchmarking, consisting of only two beanshells11. 
The first processed the workflow input removing all characters after the first space. The second 
appends the letters “bench” to each line. The automatically compiled program was generated using 
the PPL translator, which places the beanshell logic was contained in the reducer step rather than the 
mapper, so that dot or cross products could be created in the map step, when applicable(see section 
2.3 for more details). This experiment required neither dot nor cross products so this is of little 
concern. However, since the cluster was configured to run twice as many map tasks than reduce tasks, 
the decision to place logic into the reduce phase increases runtime for all experiments. 

The manually created version was somewhat simpler. Exact knowledge of what the program was 
supposed to do meant the MapReduce job could be written more efficiently. For example, the 
manually created program does not use beanshells and has no reduce step. The logic was kept in two 
map jobs to aid comparability with the two jobs generated for the automatically compiled program. 
Finally, a third, manually created program contains all these steps inside one map class. 

All three programs were run multiple times and the average runtimes determined. Figure 3 shows 
the results of the benchmarks. 

                                                           
11 http://www.beanshell.org/  

http://www.beanshell.org/
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Figure 3: Runtimes of different programs (code versions). 1: automatic compilation, 2: 
manual program, 3: all in one map class 

There are a couple of main factors which cause the differences in runtimes seen above. Probably 
the most significant fact is that the automatically compiled version employs beanshells to execute the 
logic. Every reduce() call creates a new beanshell which has to parse the script. Another factor is the 
low number of reducers in comparison to mappers. What is not a factor, however, is algorithmic 
structure of the programs. All comply with standard map reduce code conventions and coding styles. 

A possible way to increase performance might be to create just a single beanshell per reduce 
class, not per call of reduce(). This would mean that the beanshell script is parsed fewer times 
potentially reducing runtime. Another possibility is to move the logic into a mapper instead of a 
reducer to have more concurrent tasks running; the downside of this is that creating dot and cross 
products would require an additional MapReduce phase before executing the actual logic of the 
activity. 

3.3 Conclusion 
A simple Taverna workflow was created and was then automatically converted to a Hadoop 

program using the PPL translator.  Then a map reduce job was written that performed the same task, 
but more efficiently, because it was bespoke developed for the particular task. Opposed to that will be 
the possibility to convert any Taverna workflow. Automatic optimization is a lot more difficult than 
creating programs to perform simple tasks by hand. Currently automatic compilation is much less 
efficient than developing the map reduce jobs manually. 

It is certainly possible to run Taverna workflows on a Hadoop cluster. The drawback of using a 
beanshell interpreter is negligible as soon as the workflow consists of other activities, specifically local 
tool invocations, which will spawn local tools running on the nodes and are reported to be more 
efficient. In that case, logic cannot be moved into the MapReduce java program and the overhead of 
using Hadoop is potentially lower, e.g. if the local tools are written as highly optimized C programs. 
However, there is room for optimization.  
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4 Optimization for Scalable Preservation 
In the context of preservation, availability of main memory is a concern. Compared to common 

Hadoop jobs which often work on lines of Strings, data input to individual preservation tasks can be 
much larger, for example, a single image or audio/video data. In order to make the execution of 
preservation tasks on Hadoop more feasible, memory management optimization is proposed. 

4.1 Introduction 
The amount of data generated by data intensive preservation applications calls for distributed 

shared-nothing environments in order to be able to cope. In these environments, although each node 
is independent and self-sufficient, hardware and data is shared by multiple users or jobs. An example 
is the data stored at Google's data centres, which is used to generate a page rank for the stored pages, 
calculate ad revenues and distribution, and many more jobs simultaneously. An occurring problem in 
these environments is resource distribution. How should resources be split among users to be fair and 
at the same time guarantee good resource utilization and run times?  

One resource that is always used is main memory. Many parts of the system can be considered 
memory consumers, i.e. they need a sufficient amount of main memory to work. Examples are buffers 
for network activity or sorting, and user defined functions (UDFs) running on the system. Static 
memory allocation by these individual components, can significantly degrade the system’s 
performance, e.g., if a UDF allocates all available main memory, a subsequent UDF starting while the 
first one is still running will crash because there is no memory available for it. Another example is the 
execution of a UDF on heterogeneous data on multiple nodes. A fixed memory size does not consider 
the heterogeneity of the data and thus will probably be larger than necessary for almost all running 
instances. In a multi-tenant system this results in performance degradation for all users. 

MapReduce is a paradigm for reliable, distributed computing on big data that incorporates UDFs 
in two phases: map and reduce. It was originally proposed by Dean and Ghemawat from Google in 
2008 [3]. 

Stratosphere12 is a system that goes beyond map and reduce by introducing an advanced parallel 
programming model, which allows for more second order functions. 

Apache Hadoop13 is an open source, multi-tenancy framework that implements the MapReduce 
paradigm [26]. Big companies like Facebook or Yahoo adopted the use of the Apache Hadoop project. 
Its popularity led to a lot of research that has been done in the field. 

For example, Morton et al. try to estimate the progress of a running Hadoop job [15]. However, 
they assume knowledge about cardinality of data and a homogeneous distribution, which is not always 
the case. Multiple groups worked on capturing provenance in order to be able to debug jobs and the 
system [9] [17]. Nova is a system that runs continuous workflows on Hadoop, as opposed to the usual 
batch processing [16]. Stubby optimizes the execution of Hadoop workflows by enumerating a sub 
space of all possible execution plans and choosing the cheapest one according to a cost model, much 
like a query optimizer [12]. Following the trend of cloud computing, systems were developed to 
improve performance on elastic clouds, rather than clusters static in size. Kambatla et al. run 
performance analysis on a small part of the data to determine the best configuration for the cloud 
according to a model and a database of previously running jobs [8]. Zaharia et al. improve the 
scheduling of Hadoop jobs in the cloud [29]. As opposed to the standard scheduler, which assumes a 

                                                           
12 https://www.stratosphere.eu/ accessed on 2013-02-04 

13 http://hadoop.apache.org accessed on 2013-02-04 

https://www.stratosphere.eu/
http://hadoop.apache.org/
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homogeneous cluster environment, Zaharia et al. created the LATE scheduler, which is optimized for 
heterogeneous environments. Aria optimizes Hadoop's execution in the cloud by adding automatic 
resource allocation and de-allocation to have jobs meet soft deadlines in execution time automatically 
[22]. Systems like Starfish [7] optimize Hadoop job execution on multiple levels, i.e. workloads, 
workflows, and jobs. Aria and Starfish also optimize job execution by tuning Hadoop job parameters, 
e.g. degree of parallelism, according to a performance model. Tian et al. created a cost model to 
predict run times of jobs for different configurations, which allows them also to automatically tune 
Hadoop configurations to reduce run time [21]. 

Despite the vast research on optimization that has been done, the field of main memory 
consumption has not been touched as of yet. And that regardless of the fact that wrong configuration 
of Hadoop jobs’ memories by individual users can severely decrease cluster performance. It is possible 
for a user to define configurations regarding resource utilization on a per job basis. But that is not fine-
grained enough. Because data stored in the Hadoop Distributed File System (HDFS) can be arbitrary 
and therefore very heterogeneous, different tasks of a single job have different optima in 
configuration. 

The goal of this work package will be the improvement of Hadoop's robustness for preservation 
tasks through automatic resource management, in this case, predominantly focussing on memory as a 
resource. Three main concepts are proposed: 

 
• Consumer Manager 

o A new scheduler that handles all memory consumers. 
• Cost Model 

o A model to calculate the required memory for memory consumers. 
• Memory Broker 

o Is aware of available memory and will give memory to consumer manager. The 
amount of memory is requested from the model. 

 

4.2 Related Work 
Although memory management in Hadoop has not been approached yet, a lot of expertise exists 

in the individual fields of this research. In [5], Graefe describes what robust query processing should 
yield: "great performance every time instead of exceptional performance in exceptional 
circumstances." This concisely describes the goal of this work package. The occasions when a user 
chooses optimal resource allocation are very exceptional. By removing this resource configuration 
responsibility from the user, the aim is to achieve an overall performance improvement; even when 
the cost model does not choose the optimal amount of heap memory, the plan shall still be executed 
with sufficiently good performance. 

Graefe et al. also published a paper on how to visualize the robustness of query execution [6]. 
There, they show how to create diagrams that show how well plans perform. These might help 
identify optimal resource configuration for Hadoop as well. TritonSort is a system that balances 
resources when sorting large data sets, e.g. 100TB. Their goal was to create a system that can sort 
datasets while finding a beneficial compromise between speed, resource utilization, and cost [17]. 
While TritonSort is an independent system, its successor, Themis, improves MapReduce job 
performance [19]. Because a lot of MapReduce jobs are I/O-bound, it minimizes the number of I/O 
operations to a total of two disk reads and two disk writes (if the data does not fit into memory). 

Furthermore, there has been research around DB2 that is concerned with memory utilization and 
self-managing systems. Lightstone et al. share their experience on making the system more autonomic 
during the DB2 Autonomic Computing project [10]. Another publication by Lightstone et al. focuses on 
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the optimization of concurrency by adapting lock memory dynamically [11]. Finally, Storm et al. 
propose adaptive memory through a cost-benefit analysis and control theory [20]. Their memory 
controller constantly checks whether system performance can be improved through a change in 
memory distribution. 

Related work exists for the three main components of proposed work, as described in the 
following subsections. 

4.2.1 Consumer Manager 
White gives a very good overview over all consumers of the Hadoop system, how much memory 

they need, and how Hadoop schedules jobs on individual nodes [26]. Yang et al. show how they 
choose the correct resources for the execution of certain user functions on a global grid scale [27][28]. 
Some of their approaches might be adaptable to choose the right nodes in a Hadoop cluster of 
heterogeneous nodes. This is the case, for example, when Hadoop is executed on an elastic cloud such 
as Amazon EC214. 

4.2.2 Cost Model 
For the cost model, two main topics are relevant: memory models and code analysis. 
• Memory Models 

o A general overview over the Java memory model is given by Manson et al. [14]. 
Manegold et al. identify memory access patterns and provide cost functions. These 
functions take into account the access level in the memory hierarchy [13]. A paper by 
Weikum et al. gives an overview of self-tuning methods for memory management 
issues. The issues range from traditional caching to exploiting distributed memory. For 
web-based systems, they also discuss the problem of speculative prefetching [25]. 
Also, this work might be a little remote, but Upadhyaya et al. present a system which 
optimizes shared data access and makes the benefiting users pay for their 
improvement [22]. 

• Code Analysis 
o Through the use of static or dynamic code analysis, certain properties for a UDF can 

be derived. One possible property is the worst case execution time [4]. Knowing the 
worst case execution time will help the scheduler. But even more, if the time could be 
determined as a function of the maximum available heap space, code analysis could 
be used to assume good values for the UDF's heap (see above [13]). For a more 
general approach to execution time prediction, Vrchoticky wrote a good overview 
[24]. However, he assumed real-time programs and access to the compiler. Hadoop, 
on the other hand, should run any program compiled with any Java compiler. 

4.2.3 Memory Broker 
Spear and Gardner give a detailed description of how an apparatus could broker memory 

resources [1]. Since Hadoop is a multi-tenant system, execution of UDFs is basically a multi-user query 
execution. Davison et al. present a framework that manages resources for such executions [2]. They 
consider largely varying resource requirements, which is also the case for Hadoop. 

                                                           
14 http://aws.amazon.com/en/ec2/ accessed on 2013-02-04 

http://aws.amazon.com/en/ec2/
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4.3 Resource Management 
The following sub sections explain two systems and how they handle memory management: 

Hadoop and Stratosphere. 

4.3.1 State of the Art 
Hadoop's current state of the art allows any user to request as much memory as they desire. Even 

more than is physically available, which will result in a crash of the task. This approach is not feasible in 
a multi-tenant environment, because a) a user often does not know how much memory their UDF’s 
need; and b) Hadoop cannot guarantee reliability, as machines might crash when users request too 
much memory. 

Figure 4 shows the proportion of memory needed on every Hadoop worker node, when using the 
standard configuration [26]. The box sizes within the figure are scaled according to their consumption. 
The standard configuration for the data node is 1GB. It runs as an HDFS client on the node. 

 

 
The common configuration for the task tracker is also 1GB. The task tracker runs as a Hadoop job 

client. It takes requests from the master node to run tasks on this machine. Finally, up to a certain 
amount of map or reduce tasks run on the machine. Usually, a map or reduce task has a maximum 
heap space of 200MB. If a maximum of ten tasks per node is configured, Hadoop needs a total of 4GB 
of available memory on each node. Besides data node, task tracker, and task slots, no significant 
memory consumer needs to run on a node in order to provide all of Hadoop's functionality. 
Stratosphere currently only allows one job to run at any given time. Consequently, a complex memory 
management system is unnecessary. However, as soon as multiple jobs can run concurrently, some 
kind of memory broker needs to be available to the system. 

Figure 4: Hadoop memory consumers. 
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4.3.2 New Approach 
A possible solution is a memory management system incorporating three major components, 

namely a) a consumer manager that manages consumer's memory requests per node; b) a memory 
broker that manages the available memory and gives memory to users; and c) a cost model for 
memory requirements for UDFs and possibly other consumers. A consumer in this case means any 
part of the system that requires memory, e.g. a UDF, a job tracker, or the HDFS client. Figure 5 shows 
how the system processes a memory request in four steps: 

 
1. The consumer manager wants to create a new JVM and needs a valid configuration. A simple 

reason could be the creation of a new task on a machine. It asks the memory broker of that 
node for a configuration. 

2. The memory broker manages the memory, but does not know which configuration individual 
JVMs require to run optimally. It requests the requirements for a certain task from the cost 
model. 

3. The cost model uses either a learning model or code analysis to specify minimum and 
optimum configurations for the JVM. This is by far the most crucial part of the entire proposal. 
Figure 6 displays possible solutions for the creation of a cost model, and assumes that the 
same job will run multiple times. The learning approach would store intermediate results in a 
database. After a UDF is submitted, the model checks the database for whether information is 
already available. An algorithm determines a new configuration for the UDF depending on the 
possibly available information from the database. After execution was successful or 
unsuccessful, the newly gained knowledge is saved in the database. The code analysis 
approach however would try to predict performance estimates by static or dynamic code 
analysis. After a UDF is submitted, the database is checked and the code is analysed if the 
database does not store any previously gained knowledge. According to the cost model, the 
code is executed with a specific configuration. Success, failure, or more detailed data on 
performance might be written to the database, if it contains new information. 

4. As soon as the required configuration is available, the memory broker tells the consumer 
manager, which can in turn start the JVM. The consumer manager will observe all running 
JVMs and how close heap space usage is to its maximum. The manager might decide to restart 
JVMs with different configurations and report to the cost model. In that case, the entire 
procedure could restart: the manager asks the broker for memory and so on. The manager 
might also be able to pause and migrate JVMs by serializing their states to save time, instead 
of restarting JVMs and their tasks. 

 

Figure 2: Flow of memory requests and responses. Figure 1: Flow of memory requests and responses. 
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The consumer manager runs on every node and schedules jobs. It might very well be necessary to 
change the standard Hadoop scheduler as well. A possibly easy, effective change could be a switch 
from task slots to fractions and multiples of task slots. That way, every task occupies a fraction or a 
multiple of a standard task, which means the scheduler knows when a node is completely occupied, 
e.g. by a task taking up all available task slots and memory. It could still happen that a task needs to 
wait on a node after being scheduled by Hadoop, because there are not enough slots available. An 
alternative would be the new YARN framework15. The new YARN framework decouples MapReduce 
logic and MapReduce management. 

 
An open question is how the consumer manager should schedule these jobs, and other jobs that 

are being scheduled by Hadoop, on that node when task slots are available. Or, indeed, whether the 
consumer manager should block the slots even if the task is not being executed yet. Also of interest is 
the issue of scheduling smaller tasks while a large task is waiting. Doing that would reduce overall run 
time of the jobs, but might lead to the large task never being executed because slots are always in use 
by smaller tasks. A weighting of waiting tasks could help determine when to stop scheduling smaller 
tasks in favour of larger ones. 

4.4 Evaluation 
Evaluations can be done for every individual part of the proposal as well as for the combination of 

all parts, although it might be hard to evaluate the robustness of the system. Additional information of 
interest is, for example, run time or overall memory consumption (and their comparison).  

                                                           
15 http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html accessed 

on 2013-03-01 

Figure 3: Cost model creation possibilities. 

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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5 Conclusion 
It is shown to be feasible to parallelize Taverna workflows. The implementation of a prototype for 

the automatic translation from Taverna to Hadoop has shown that the process of parallelizing such 
workflows (and therefore preservation processes embedded as workflows) can easily be automated to 
an extent that anyone can create parallel preservation processes with ease using a graphical user 
interface. The automatic translator at the same time opens the possibility for automatic optimization 
of parallel programs. 

A possible optimization strategy has been proposed that is specific to the preservation 
community. It considers the distinct type of data that needs to be processed by the system and how to 
increase efficiency for that type. 
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7 Appendix 

7.1 Template for Beanshell Execution on Hadoop 
<%@ requires imports = 
"java.io.IOException,org.apache.hadoop.io.Text,org.apache.hadoop.mapreduce.Reducer,org.apache.hadoop.mapre
duce.lib.output.MultipleOutputs,bsh.EvalError,bsh.Interpreter" %> 
  public static class <%= configName %>BeanshellReduce extends Reducer<Text, Text, Text, Text> { 
    private Interpreter interpreter = new Interpreter(); 
    private String script = <%= script %>; 
    private Text newValue = new Text(); 
    private String valueString; 
    private String port; 
    private MultipleOutputs<Text, Text> mos; 
 
    /* (non-Javadoc) 
     * @see org.apache.hadoop.mapreduce.Reducer#reduce(java.lang.Object, java.lang.Iterable, 
org.apache.hadoop.mapreduce.Reducer.Context) 
     */ 
    @Override 
    protected void reduce(Text key, Iterable<Text> values, 
        Context context) throws IOException, InterruptedException { 
      // Empty value string 
      valueString = ""; 
 
      // Clear interpreter first 
      try { 
        interpreter.eval("clear();"); 
 
        for(Text value : values) { 
          valueString = value.toString(); 
 
          port = valueString; 
          // Is within an output folder of a previous activity 
          if(valueString.indexOf("-r-") != -1) { 
            port = valueString.substring(0, valueString.lastIndexOf("-r-")) + "/"; 
          } 
 
          port = getPortFromInput(port.substring(port.lastIndexOf(",") + 1)); 
 
          valueString = valueString.substring(0, valueString.lastIndexOf(",")); 
          interpreter.set(port, valueString); 
        } 
 
        interpreter.eval(script); 
 
        <%= multipleOutputsWrite %> 
      } catch (EvalError e) { 
        System.err.println("Could not evaluate beanshell: " + e.getMessage()); 
        e.printStackTrace(); 
      } 
    } 
 
    /* (non-Javadoc) 
     * @see org.apache.hadoop.mapreduce.Reducer#setup(org.apache.hadoop.mapreduce.Reducer.Context) 
     */ 
    @Override 
    protected void setup(Context context) throws IOException, 
        InterruptedException { 
      super.setup(context); 
      mos = new MultipleOutputs<Text, Text>(context); 
    } 
 
    /* (non-Javadoc) 
     * @see org.apache.hadoop.mapreduce.Reducer#cleanup(org.apache.hadoop.mapreduce.Reducer.Context) 
     */ 
    @Override 
    protected void cleanup(Context context) throws IOException, 
        InterruptedException { 
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      super.cleanup(context); 
      mos.close(); 
    } 
 
    /** 
     * Get the folder name that corresponds to the output port name. 
     *  
     * Removes everything behind the last slash (including) and then before the last dash (including). 
     * E.g. /this/is/a/path/portname/part0 
     * becomes /this/is/a/path/portname and finally 
     * portname 
     *  
     * @param path the path of the file 
     * @return the output port name 
     */ 
    private String getPortFromInput(String path) { 
      // Remove everything behind last slash (including) 
      path = path.substring(0, path.lastIndexOf("/")); 
      // Remove everything before last slash (including) 
      path = path.substring(path.lastIndexOf("/") + 1); 
 
      // Remove activity name in front 
      path = path.substring("<%= configName %>".length()); 
 
      return path; 
    } 
 
  } 

 


